On vous demande aujourd’hui de résoudre cette expression mathématique assez complexe. Etes-vous à la hauteur de ce défi ?
L’expression du jour est [(7 × (3² − 1)) − 4²]. Comment parvenir à la bonne réponse ?
En effet, vous allez découvrir une explication minutieuse de la résolution de ce problème. Chaque étape vous sera révélée de manière claire.
Pourquoi les défis mathématiques sont importants ?
Les tests mathématiques contribuent au développement des compétences analytiques et du raisonnement logique. Ce sont des exercices qui poussent le cerveau à penser de manière critique et à résoudre des problèmes complexes.
Ils sont d’une grande importance en éducation, car ils aident les étudiants à faire face à des défis tout en favorisant une approche méthodique de la résolution de problèmes.
Les défis mathématiques ne sont pas uniquement une pratique d’évaluation. Ils se présentent comme un moyen de développer et d’améliorer des compétences qui seront utiles tout au long de la vie.
Quelle est la solution de cette expression ?
Pour rappel, l’expression à résoudre est [(7 × (3² − 1)) − 4²].
Étape 1 : Résolution des opérations entre parenthèses
Pour respecter le bon ordre des opérations mathématiques, il faut commencer par le calcul entre parenthèses.
- Puissance : Calculez d’abord 3², qui veut dire 3 au carré.
3²= 9
- Soustraction : Ensuite, faites le calcul entre parenthèses (9 – 1).
(9 – 1 = 8)
- Multiplication : multipliez 7 par le résultat de la soustraction.
(7 x 8 = 56)
Ces étapes donnent la première partie de la solution principale.
Étape 2 : Calcul de l’autre puissance
Après avoir traité les opérations entre parenthèses, on passe à la deuxième partie du calcul qui fait appel à une autre puissance.
- Puissance : Calculez 4², soit 4 au carré.
4² = 16
Étape 3 : Calcul final
Avec les résultats des opérations précédentes, on peut maintenant compléter l’expression principale.
- Soustraction : faites la soustraction du résultat de la première partie avec ce résultat.
(56 – 16 = 40)
La solution finale est [(7 × (3² − 1)) − 4²] = 40.
Sachez que l’ordre des opérations est la clé pour résoudre convenablement les expressions complexes tout en évitant les erreurs.